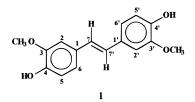
A Stilbene from the Roots of Leuzea carthamoides

Zsuzsanna Hajdú,*,† Erzsébet Varga,† Judit Hohmann,† Alajos Kálmán,‡ Gyula Argay,‡ and Gábor Günther§

Departments of Pharmacognosy and Pharmaceutical Chemistry, Albert Szent-Györgyi Medical University, P.O. Box 121, H-6701 Szeged, Hungary, and Central Research Institute for Chemistry, Hungarian Academy of Sciences, P.O. Box 17, Budapest, Hungary


Received April 1, 1998

From the roots of *Leuzea carthamoides*, (*E*)-3,3'-dimethoxy-4,4'-dihydroxystilbene (**1**) has been isolated and its structure elucidated by means of NMR spectroscopy, including HMQC and HMBC measurements, mass spectrometry, and X-ray crystallography.

Leuzea carthamoides DC. [syn. *Rhaponticum carthamoides* (Willd.) Iljin] (Asteraceae) is a medicinal plant of Siberian origin that possesses stimulant and tonic activity.¹ It belongs to the group of adaptogenic plants.² The roots are used in both traditional and official medicine in the countries of the former Soviet Union, and the above-ground parts are used as fodder material.^{3,4} The plant has been introduced into cultivation in several European countries.

Previous chemical studies on *L. carthamoides* have revealed the presence of ecdysteroids, flavonoids, and polyacetylenes.^{5–9} The present paper describes the isolation of a stilbene derivative and its structure elucidation. This is the first report on the isolation of this compound from *L. carthamoides* and on its occurrence in the family Asteraceae.

The benzene-soluble fraction of a methanol extract of the roots of *L. carthamoides* was subjected to repeated chromatography to afford compound **1**. The ¹H NMR spectrum

of **1** contained signals at $\delta_{\rm H}$ 7.02 d (J = 2 Hz), 7.00 dd (J =2 and 8 Hz), and 6.90 d (J = 8 Hz), corresponding to an ABX aromatic system. The singlet signal at $\delta_{\rm H}$ 3.95, with three-proton intensity, revealed the presence of a methoxy group. Additionally, two singlet signals could be observed in the ¹H NMR spectrum at $\delta_{\rm H}$ 6.89 and 5.61. The HMQC spectrum of 1 demonstrated the presence of five protonated carbons at δ_C 126.9, 120.4, 114.8, 108.5, and 56.1 and indicated that the singlet signal at $\delta_{\rm H}$ 5.61, which did not exhibit any correlations, corresponded to a hydroxyl group. The HMQC correlations permitted the unambiguous assignments of the ¹H and ¹³C NMR spectra of 1. The twoand three-bond long-range correlations observed in the HMBC spectrum pointed to the presence of three quaternary carbons (δ_{C} 146.8, 145.4, and 130.6), and the HMBC correlation signals suggested the partial structure of

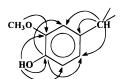
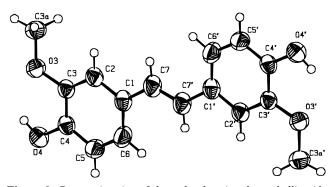



Figure 1. Observed main couplings of an HMBC experiment of 1 (H(C).

Figure 2. Perspective view of the molecule using thermal ellipsoids with 50% probability level. (Symmetry-equivalent atoms are marked with a prime).

compound 1 depicted in Figure 1. The EIMS of 1 exhibited a molecular peak at m/z 272, and the high-resolution mass spectrum led to the elemental formula for 1 of $C_{16}H_{16}O_4$. These data suggested that the molecule of 1 is formed from two of the units elucidated by means of the NMR studies above. Thus, this compound was identified as a symmetric stilbene with 3,3'-dimethoxy-4,4'-dihydroxy substitution. The Z or E stereochemistry of the olefinic protons was investigated by means of X-ray analysis. The crystallographic data confirmed the structure of 1 as (E)-4,4'dihydroxy-3,3'-dimethoxystilbene (Figure 2). The molecule has a center of symmetry at the C-7-C-7' double bond of 1.305(4) Å. Other relevant distances (Å) are as follows: C-1-C-7 1.473(2); C-4-O-4, 1.370(2); C-3-O-3, 1.373(2); and O-3-C-3a 1.418(2). The average C-C bond distance in the benzene ring is 1.386(2) Å. In the crystal lattice, there is an O-4-H-4···O-3 intermolecular hydrogen bond O-4-H-4···O-3ⁱ (O···Oⁱ, 2.932 Å, H···Oⁱ, 2.146 Å; O-H··· Oⁱ, 160.6°; the symmetry operatorⁱ, -x, y, 0.5 - z). The corresponding parameters for the intramolecular O-4-H-4····O-3 hydrogen connection are 2.668 Å, 2.216 Å, and 115.0°.

(*E*)-3,3'-Dimethoxy-4,4'-dihydroxystilbene has not been reported previously as a natural product. To date, **1** has been described only as a synthetic product and as one of the degradation products of lignin.¹⁰

 ^{*} To whom correspondence should be addressed. Tel.: (36)-62 312 233.
 Fax: (36)-62 324 177. E-mail: hajdu(pharma.szote.u-szeged.hu.
 [†] Department of Pharmacognosy, Albert Szent-Györgyi Medical Univer-

sity. ¹ Central Research Institute for Chemistry, Hungarian Academy of

⁸ Department of Pharmaceutical Chemistry, Albert Szent-Györgyi Medical University.

Experimental Section

General Experimental Procedures. The melting point was uncorrected. Spectral data: UV, MeOH; IR, KBr; EIMS, 70 eV, direct inlet; ¹H NMR and 2D correlation spectra, 400 MHz (¹H) and 100 MHz (¹3C), CDCl₃, with TMS as internal standard. Column chromatography: silica gel (Kieselgel 60, Merck). TLC: silica gel (Kieselgel 60F₂₅₄, Merck).

Plant Material. The roots of *L. carthamoides*, supplied by the University of the Horticultural and Food Industry, Budapest, Hungary, originated from a large-scale culture at the university and were collected in October 1996. A reference sample and voucher specimen have been deposited at the Department of Pharmacognosy, Albert Szent-Györgyi Medical University, Szeged, Hungary.

Extraction and Isolation. The dried pulverized roots (3.2 kg) of *L. carthamoides* were extracted at room temperature with MeOH (50 L). The MeOH extract was evaporated under reduced pressure to give 300 g of residue, which was partitioned between water and C_6H_6 . The C_6H_6 extract was evaporated under reduced pressure in a fumehood to give an oil-like material, which was chromatographed over a silica gel column by elution with a gradient system of C_6H_6 and C_6H_6 – EtOAc (49:1 \rightarrow 48:2). From the fractions obtained with C_6H_6 – EtOAc (4:1) as the solvent system.

(*Ē*)-3,3'-Dimethoxy-4,4'-dihydroxystilbene (1): colorless crystals from CH₂Cl₂-MeOH (1:1); mp 212–215 °C; UV λ_{max} (log ϵ) 224, 239 (sh), 309 (sh), 338, 350 (sh) nm; IR v_{max} 3400, 2940, 1590, 1460, 1430, 1370, 1290, 1260, 1220, 1160, 1110, 1020, 960, 930, 870, 850, 820, 790, 720, 630 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.95 (3H, s, OCH₃), 5.61 (1H, s, OH), 6.89 (1H, s, H-7), 6.90 (1H, d, J = 8 Hz, H-5), 7.00 (1H, dd, J = 8, 2 Hz, H-6), 7.02 (1H, d, J = 2 Hz, H-2); ¹³C NMR (100 MHz, CDCl₃) δ 56.1 (OCH₃), 108.5 (C-2), 114.8 (C-5), 120.4 (C-6), 126.9 (C-7), 130.6 (C-1), 145.4 (C-4), 146.8 (C-3); EIMS m/z 272 [M]⁺ (100), 257 [M - CH₃]⁺ (1), 242 [M - 2 × CH₃]⁺ (1), 211 [M - CH₃ - CO - H₂O] (10), 207 (6), 197 (7), 169 (6); HREIMS m/z 272.10480 [M]⁺ C₁₆H₁₆O₄ required 272.10486.

Crystal data for 1: M = 272.29, monoclinic, space group C2/c; a = 20.689(1) Å, b = 5.327(1) Å, c = 12.924(1) Å, $\beta = 99.74(1)^{\circ}$. V = 1403.8(3) Å³, Z = 4, $D_c = 1.288$ Mg m⁻³, μ (Cu K α radiation, $\lambda = 1.5418$ Å) = 0.759 mm⁻¹. Crystal dimensions: $0.20 \times 0.15 \times 0.02$ mm. Intensity data ($-25 \le 25$, $-6 \le 6$, $-16 \le 16$, $\theta_{max} = 75.05$) were collected on an Enraf-Nonius CAD4 diffractometer. The crystal structure was solved by direct methods. Full-matrix least-squares refinement of atomic parameters based on F_0^2 converged at R1 = 0.038 for 998 $F_0^2 > 2\sigma(F_0^2)$ unique reflections ($R_{tot} = 0.0717$ for 1442 reflections). Atomic parameters, bond lengths, bond angles and torsion angles have been deposited at the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, U.K.

Acknowledgment. We are grateful to Dr. Gyula Jerkovich (Spectroscopic Department, Institute for Drug Research Ltd., Budapest, Hungary) for the mass spectroscopic measurements. This work was supported by the Hungarian–Finnish S & T Cooperation Program for 1997–1999 (OMFB-CIMO) No. SF-14/1997.

References and Notes

- (1) Petkov, V.; Roussinov, K.; Toodrov, S.; Lazarova, M.; Yonkov, V.; Draganova, S. *Planta Med.* **1984**, *50*, 205–209.
- (2) Brekhman, I. I.; Dadymov, I. V. Annu. Rev. Pharmacol. **1969**, *9*, 419–430.
- Turova, A. D. Lekarstvennye Rasteniya SSSR i Ikh Primenenie; Meditsina: Moscow, 1967.
 Földesi, D.; Lehoczky, M.; Dános, B.; Tétényi, P. Herba Hung. 1982,
- (4) Földesi, D.; Lehoczky, M.; Dános, B.; Tétényi, P. *Herba Hung.* 1982, 21, 99–107.
- Girault, J. P.; Lafont, R.; Varga, E., Hajdú, Zs.; Herke, I.; Szendrei, K. *Phytochemistry* **1988**, *27*, 737–741.
 Szendrei, K.; Varga, E.; Hajdú, Zs.; Herke, I. Lafont, R. Girault, J.
- (6) Szendrei, K., Varga, E., Fajdu, Z., Fierke, I. Labit, K. Girauti, J. P. J. Nat. Prod. 1988, 51, 993–995.
 (7) Szendrei, K.; Reisch, J.; Varga, E. Phytochemistry 1984, 23, 901–
- (7) Szendrei, K.; Keisch, J.; Varga, E. Phytochemistry 1964, 23, 901– 902.
 (8) Dombi, Gy.; Szalma, S.; Pelczer, I.; Varga, E.; Hajdú, Zs.; Szendrei,
- (6) Dombi, Gy.; Szalma, S.; Peiczer, I.; Varga, E.; Hajdu, Z.S.; Szendrei, K. *Fitoterapia* **1989**, *60*, 159–160.
 (9) Varga, E.; Hajdú, Z.S.; Szendrei, K.; Pelczer, I.; Jerkovich, Gy. *Herba*
- Hung, **1990**, 29, 51–55. (10) Gellerstedt, G.; Agnemo, R. Acta Chem. Scand. **1980**, B34, 461–462.

NP980128I